

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	mahotas 1.0 documentation

Mahotas: Computer Vision in Python

Mahotas is a computer vision and image processing library for Python.

It includes many algorithms implemented in C++ for speed while operating in
numpy arrays and with a very clean Python interface.

	Notable algorithms:

	
	watershed.

	convex points calculations.

	hit & miss. thinning.

	Zernike & Haralick, LBP, and TAS features.

	freeimage based numpy image loading (requires freeimage libraries to be
installed).

	Speeded-Up Robust Features (SURF), a form of local features.

	thresholding.

	convolution.

	Sobel edge detection.

Mahotas currently has over 100 functions for image processing and computer
vision and it keeps growing.

The release schedule is roughly one release a month and each release brings new
functionality and improved performance. The interface is very stable, though,
and code written using a version of mahotas from years back will work just fine
in the current version, except it will be faster (some interfaces are
deprecated and will be removed after a few years, but in the meanwhile, you
only get a warning). In a few unfortunate cases, there was a bug in the old
code and your results will change for the better.

There is a manuscript about mahotas [http://arxiv.org/abs/1211.4907], which
is forthcoming in the Journal of Open Research Software [http://openresearchsoftware.metajnl.com/]. Full citation (for the time
being) is:

Mahotas: Open source software for scriptable computer vision by Luis Pedro
Coelho in Journal of Open Research Software (forthcoming).

Examples

This is a simple example of loading a file (called test.jpeg) and calling
watershed using above threshold regions as a seed (we use Otsu to define
threshold).

import numpy as np
import mahotas
import pylab

img = mahotas.imread('test.jpeg')
T_otsu = mahotas.thresholding.otsu(img)
seeds,_ = mahotas.label(img > T_otsu)
labeled = mahotas.cwatershed(img.max() - img, seeds)

pylab.imshow(labeled)

Computing a distance transform is easy too:

import pylab as p
import numpy as np
import mahotas

f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
f is basically True with the exception of two islands: one in the lower-right
corner, another, middle-left

dmap = mahotas.distance(f)
p.imshow(dmap)
p.show()

(Source code)

Full Documentation Contents

Jump to detailed API Documentation

	How To Install Mahotas
	From source

	On Windows

	Packaged Versions

	Finding Wally

	Labeled Image Functions
	Labeling Images

	Filtering Regions

	Borders

	API Documentation

	Thresholding
	API Documentation

	Wavelet Transforms
	What About the Borders?

	API Documentation

	Distance Transform
	Distance Transform and Watershed

	API Documentation

	Polygon Utitilities
	Drawing

	Convex Hull

	API Documentation

	Features
	Global features

	Local features

	Local Binary Patterns
	API Documentation

	Speeded-Up Robust Features
	API Documentation

	Classification Using Mahotas

	Morphological Operators
	Dilation & Erosion

	Close & Open

	Input/Output with Mahotas

	Frequently Asked Questions
	Why did you not simply contribute to scipy.ndimage or scikits.image?

	What are the parameters to Local Binary Patterns?

	I am using mahotas in a scientific publication, is there a citation?

	Mahotas Internals
	Philosophy

	C++/Python Division

	C++ Templates

	The Why of mahotas
	Principles of Mahotas

	Just work

	Well documented

	Fast code

	Simple code

	Minimal dependencies

	Contributing
	Debug Mode

	Possible Tasks
	New Features

	Small Improvements

	Internals

	Tutorials

	History
	1.0 (May 21 2013)

	0.99 (May 4 2013)

	0.9.8 (April 22 2013)

	0.9.7 (February 03 2013)

	0.9.6 (December 02 2012)

	0.9.5 (November 05 2012)

	0.9.4 (October 10 2012)

	0.9.3 (October 9 2012)

	0.9.2 (September 1 2012)

	0.9.1 (August 28 2012)

	0.9 (July 16 2012)

	0.8.1 (June 6 2012)

	0.8 (May 7 2012)

	0.7.3 (March 14 2012)

	0.7.2 (February 13 2012)

	0.7.1 (January 6 2012)

	Full API Documentation
	Main Features

Indices and tables

	Index

	Search Page

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

How To Install Mahotas

From source

You can get the released version using your favorite Python package manager:

easy_install mahotas

or:

pip install mahotas

If you prefer, you can download the source from PyPI [http://pypi.python.org/pypi/mahotas] and run:

python setup.py install

You will need to have numpy and a C++ compiler.

Bleeding Edge (Development)

Development happens on github [https://github.com/luispedro/mahotas]. You
can get the development source there. Watch out that these versions are more
likely to have problems.

On Windows

On Windows, Christoph Gohlke does an excelent job maintaining binary packages
of mahotas [http://www.lfd.uci.edu/~gohlke/pythonlibs/] (and several other
packages).

Packaged Versions

Python(x, y)

If you use Python(x, y) [http://pythonxy.com/], which is often a good
solution, you can find mahotas in the Additional Plugins [http://code.google.com/p/pythonxy/wiki/AdditionalPlugins] page.

FreeBSD

Mahotas is available for FreeBSD as graphics/mahotas [http://www.freshports.org/graphics/mahotas].

MacPorts

For Macports, mahotas is available as py27-mahotas [https://trac.macports.org/browser/trunk/dports/python/py-mahotas/Portfile].

Frugalware Linux

Mahotas is available as python-mahotas.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Finding Wally

This was originally an answer on stackoverflow [http://stackoverflow.com/questions/8849869/how-do-i-find-wally-with-python] We can use it as a simple tutorial example.

The problem is to find Wally (who goes by Waldo in the US) in the following
image:

from pylab import imshow, show
import mahotas
wally = mahotas.imread('../../mahotas/demos/data/DepartmentStore.jpg')
imshow(wally)
show()

(Source code)

Can you see him?

wfloat = wally.astype(float)
r,g,b = wfloat.transpose((2,0,1))

Split into red, green, and blue channels. It’s better to use floating point
arithmetic below, so we convert at the top.

w = wfloat.mean(2)

w is the white channel.

pattern = np.ones((24,16), float)
for i in xrange(2):
 pattern[i::4] = -1

Build up a pattern of +1,+1,-1,-1 on the vertical axis. This is Wally’s shirt.

v = mahotas.convolve(r-w, pattern)

Convolve with red minus white. This will give a strong response where the shirt
is.

mask = (v == v.max())
mask = mahotas.dilate(mask, np.ones((48,24)))

Look for the maximum value and dilate it to make it visible. Now, we tone down
the whole image, except the region or interest:

wally -= .8*wally * ~mask[:,:,None]

And we get the following:

wfloat = wally.astype(float)
r,g,b = wfloat.transpose((2,0,1))
w = wfloat.mean(2)
pattern = np.ones((24,16), float)
for i in xrange(2):
 pattern[i::4] = -1
v = mahotas.convolve(r-w, pattern)
mask = (v == v.max())
mask = mahotas.dilate(mask, np.ones((48,24)))
wally -= .8*wally * ~mask[:,:,None]
imshow(wally)
show()

(Source code)

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Labeled Image Functions

Labeled images are integer images where the values correspond to different
regions. I.e., region 1 is all of the pixels which have value 1, region two
is the pixels with value 2, and so on. By convention, region 0 is the
background and often handled differently.

Labeling Images

New in version 0.6.5.

The first step is obtaining a labeled function from a binary function:

import mahotas as mh
import numpy as np
from pylab import imshow, show

regions = np.zeros((8,8), bool)

regions[:3,:3] = 1
regions[6:,6:] = 1
labeled, nr_objects = mh.label(regions)

imshow(labeled, interpolation='nearest')
show()

(Source code)

This results in an image with 3 values:

	background, where the original image was 0

	for the first region: (0:3, 0:3);

	for the second region: (6:, 6:).

There is an extra argument to label: the structuring element, which
defaults to a 3x3 cross (or, 4-neighbourhood). This defines what it means for
two pixels to be in the same region. You can use 8-neighbourhoods by replacing
it with a square:

labeled,nr_objects = mh.label(regions, np.ones((3,3), bool))

New in version 0.7: labeled_size and labeled_sum were added in version 0.7

We can now collect a few statistics on the labeled regions. For example, how
big are they?

sizes = mh.labeled.labeled_size(labeled)
print 'Background size', sizes[0]
print 'Size of first region', sizes[1]

This size is measured simply as the number of pixels in each region. We can
instead measure the total weight in each area:

array = np.random.random_sample(regions.shape)
sums = mh.labeled_sum(array, labeled)
print 'Sum of first region', sums[1]

Filtering Regions

New in version 0.9.6: remove_regions & relabel were only added in version 0.9.6

Here is a slightly more complex example. This is in demos directory as
nuclear.py. We are going to use this image, a fluorescent microscopy image
from a nuclear segmentation benchmark [http://luispedro.org/projects/nuclear-segmentation]

(Source code)

First we perform a bit of Gaussian filtering and thresholding:

f = mh.gaussian_filter(f, 4)
f = (f> f.mean())

(Without the Gaussian filter, the resulting thresholded image has very noisy
edges. You can get the image in the demos/ directory and try it out.)

(Source code)

Labeling gets us all of the nuclei:

labeled, n_nucleus = mh.label(f)
print('Found {} nuclei.'.format(n_nucleus))

(Source code)

42 nuclei were found. None were missed, but, unfortunately, we also get
some aggregates. In this case, we are going to assume that we wanted to perform
some measurements on the real nuclei, but are willing to filter out anything
that is not a complete nucleus or that is a lump on nuclei. So we measure sizes
and filter:

sizes = mh.labeled.labeled_size(labeled)
too_big = np.where(sizes > 10000)
labeled = mh.labeled.remove_regions(labeled, too_big)

(Source code)

We can also remove the region touching the border:

labeled = mh.labeled.remove_bordering(labeled)

(Source code)

This array, labeled now has values in the range 0 to n_nucleus, but
with some values missing (e.g., if region 7 was one of the ones touching
the border, then 7 is not used in the labeling). We can relabel to get
a cleaner version:

relabeled, n_left = mh.labeled.relabel(labeled)
print('After filtering and relabeling, there are {} nuclei left.'.format(n_left))

Now, we have 24 nuclei and relabeled goes from 0 (background) to 24.

(Source code)

Borders

A border pixel is one where there is more than one region in its neighbourhood
(one of those regions can be the background).

You can retrieve border pixels with either the borders() function, which
gets all the borders or the border() (note the singular) which gets only
the border between a single pair of regions. As usual, what neighbour means is
defined by a structuring element, defaulting to a 3x3 cross.

API Documentation

The mahotas.labeled submodule contains the functions mentioned above.
label() is also available as mahotas.label.

	
mahotas.labeled.borders(labeled, Bc={3x3 cross}, out={np.zeros(labeled.shape, bool)})

	Compute border pixels

A pixel is on a border if it has value i and a pixel in its neighbourhood
(defined by Bc) has value j, with i != j.

	Parameters :	labeled : ndarray of integer type

input labeled array

Bc : structure element, optional

out : ndarray of same shape as labeled, dtype=bool, optional

where to store the output. If None, a new array is allocated

mode : {‘reflect’, ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’ [default], ‘ignore’}

How to handle borders

	Returns :	border_img : boolean ndarray

Pixels are True exactly where there is a border in labeled

	
mahotas.labeled.border(labeled, i, j, Bc={3x3 cross}, out={np.zeros(labeled.shape, bool)}, always_return=True)

	Compute the border region between i and j regions.

A pixel is on the border if it has value i (or j) and a pixel in its
neighbourhood (defined by Bc) has value j (or i).

	Parameters :	labeled : ndarray of integer type

input labeled array

i : integer

j : integer

Bc : structure element, optional

out : ndarray of same shape as labeled, dtype=bool, optional

where to store the output. If None, a new array is allocated

always_return : bool, optional

if false, then, in the case where there is no pixel on the border,
returns None. Otherwise (the default), it always returns an array
even if it is empty.

	Returns :	border_img : boolean ndarray

Pixels are True exactly where there is a border between i and j in labeled

	
mahotas.labeled.bwperim(bw, n=4)

	Find the perimeter of objects in binary images.

A pixel is part of an object perimeter if its value is one and there
is at least one zero-valued pixel in its neighborhood.

By default the neighborhood of a pixel is 4 nearest pixels, but
if n is set to 8 the 8 nearest pixels will be considered.

	Parameters :	bw : ndarray

A black-and-white image (any other image will be converted to black & white)

n : int, optional

Connectivity. Must be 4 or 8 (default: 4)

mode : {‘reflect’, ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’ [default], ‘ignore’}

How to handle borders

	Returns :	perim : ndarray

A boolean image

See also

	borders

	function This is a more generic function

	
mahotas.labeled.label(array, Bc={3x3 cross}, output={new array})

	Label the array, which is interpreted as a binary array

This is also called connected component labeled, where the connectivity
is defined by the structuring element Bc.

See: http://en.wikipedia.org/wiki/Connected-component_labeling

	Parameters :	array : ndarray

This will be interpreted as binary array

Bc : ndarray, optional

This is the structuring element to use

out : ndarray, optional

Output array. Must be a C-array, of type np.int32

	Returns :	labeled : ndarray

Labeled result

nr_objects : int

Number of objects

	
mahotas.labeled.labeled_sum(array, labeled)

	Labeled sum. sum will be an array of size labeled.max() + 1, where
sum[i] is equal to np.sum(array[labeled == i]).

	Parameters :	array : ndarray of any type

labeled : int ndarray

Label map. This is the same type as returned from mahotas.label()

	Returns :	sums : 1-d ndarray of array.dtype

	
mahotas.labeled.labeled_max(array, labeled)

	Labeled minimum. mins will be an array of size labeled.max() + 1, where
mins[i] is equal to np.min(array[labeled == i]).

	Parameters :	array : ndarray of any type

labeled : int ndarray

Label map. This is the same type as returned from mahotas.label()

	Returns :	mins : 1-d ndarray of array.dtype

	
mahotas.labeled.labeled_size(labeled)

	Equivalent to:

for i in range(...):
 sizes[i] = np.sum(labeled == i)

but, naturally, much faster.

	Parameters :	labeled : int ndarray

	Returns :	sizes : 1-d ndarray of int

See also

	mahotas.fullhistogram

	almost same function by another name (the only

difference

	
mahotas.labeled.relabel(labeled, inplace=False)

	Relabeling ensures that relabeled is a labeled image such that every
label from 1 to relabeled.max() is used (0 is reserved for the
background and is passed through).

Example:

labeled,n = label(some_binary_map)
for region in xrange(n):
 if not good_region(labeled, region + 1):
 # This deletes the region:
 labeled[labeled == (region + 1)] = 0
relabel(labeled, inplace=True)

	Parameters :	relabeled : ndarray of int

A labeled array

inplace : boolean, optional

Whether to perform relabeling inplace, erasing the values in
labeled (default: False)

	Returns :	relabeled: ndarray :

nr_objs : int

Number of objects

See also

	label

	function

	
mahotas.labeled.is_same_labeling(labeled0, labeled1)

	Checks whether labeled0 and labeled1 represent the same labeling
(i.e., whether they are the same except for a possible change of label
values).

Note that the background (value 0) is treated differently. Namely

is_same_labeling(a, b) implies np.all((a == 0) == (b == 0))

	Parameters :	labeled0 : ndarray of int

A labeled array

labeled1 : ndarray of int

A labeled array

	Returns :	same : bool

Number of objects

See also

	label

	function

	relabel

	function

	
mahotas.labeled.remove_bordering(labeled, rsize=1, out={np.empty_like(im)})

	Remove objects that are touching the border.

Pass im as out to achieve in-place operation.

	Parameters :	labeled : ndarray

Labeled array

rsize : int, optional

Minimum distance to the border (in Manhatan distance) to allow an
object to survive.

out : ndarray, optional

If im is passed as out, then it operates inline.

	Returns :	slabeled : ndarray

Subset of labeled

	
mahotas.labeled.remove_regions(labeled, regions, inplace=False)

	removed = remove_regions(labeled, regions, inplace=False):

Removes the regions in regions. If an elementwise in operator
existed, this would be equivalent to the following:

labeled[labeled element-wise-in regions] = 0

This function does not relabel its arguments. You can use the
relabel function for that:

removed = relabel(remove_regions(labeled, regions))

Or, saving one image allocation:

removed = relabel(remove_regions(labeled, regions), inplace=True)

This is the same, but reuses the memory in the relabeling operation.

	Parameters :	relabeled : ndarray of int

A labeled array

regions : sequence of int

These regions will be removed

inplace : boolean, optional

Whether to perform removal inplace, erasing the values in
labeled (default: False)

	Returns :	removed : ndarray

See also

	relabel

	function After removing unecessary regions, it is often a good idea to relabel your label image.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Thresholding

The example in this section is present in the source under
mahotas/demos/thresholding.py.

We start with an image, a grey-scale image:

luispedro_image = '../../mahotas/demos/data/luispedro.jpg'
photo = mahotas.imread(luispedro_image, as_grey=True)
photo = photo.astype(np.uint8)

The reason we convert to np.uint8 is because as_grey returns floating
point images (there are good reasons for this and good reasons against it,
since it’s easier to truncate than to go back, it returns np.uint8).

(Source code)

Thresholding functions have a trivial interface: they take an image and return
a value. One of the most well-known thresholding methods is Otsu’s method:

T_otsu = mahotas.otsu(photo)
print(T_otsu)
imshow(photo > T_otsu)
show()

prints 115.

(Source code)

An alternative is the Riddler-Calvard method:

T_rc = mahotas.rc(photo)
print(T_rc)
imshow(photo > T_rc)
show()

In this image, it prints almost the same as Otsu: 115.68. The thresholded
image is exactly the same:

(Source code)

API Documentation

The mahotas.thresholding module contains the thresholding functions, but
they are also available in the main mahotas namespace.

Thresholding Module

Thresholding functions:

	otsu():	Otsu method

	rc():	Riddler-Calvard’s method

	
mahotas.thresholding.otsu(img, ignore_zeros=False)

	Calculate a threshold according to the Otsu method.

	Parameters :	img : an image as a numpy array.

This should be of an unsigned integer type.

ignore_zeros : Boolean

whether to ignore zero-valued pixels
(default: False)

	Returns :	T : integer

the threshold

	
mahotas.thresholding.rc(img, ignore_zeros=False)

	Calculate a threshold according to the Riddler-Calvard method.

	Parameters :	img : ndarray

Image of any type

ignore_zeros : boolean, optional

Whether to ignore zero valued pixels (default: False)

	Returns :	T : float

threshold

	
mahotas.thresholding.soft_threshold(f, tval)

	Soft threshold function

^ /
| /
| /
| /
| /

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	->

/ |

/ |

/ |

/ |

/ |

/ |

	Parameters :	f : ndarray

tval : scalar

	Returns :	thresholded : ndarray

	
mahotas.thresholding.bernsen(f, radius, contrast_threshold, gthresh={128})

	Bernsen local thresholding

	Parameters :	f : ndarray

input image

radius : integer

radius of circle (to consider “local”)

contrast_threshold : integer

contrast threshold

gthresh : numeric, optional

global threshold to fall back in low contrast regions

	Returns :	thresholded : binary ndarray

See also

	gbernsen

	function Generalised Bernsen thresholding

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Wavelet Transforms

New in version 0.9.1: Wavelet functions were only added in version 0.9.1

We are going to use wavelets to transform an image so that most of its values
are 0 (and otherwise small), but most of the signal is preserved.

The code for this tutorial is avalailable from the source distribution as
mahotas/demos/wavelet_compression.py.

We start by importing and loading our input image

import numpy as np
import mahotas
from mahotas.thresholding import soft_threshold
from matplotlib import pyplot as plt
from os import path
luispedro_image = '../../mahotas/demos/data/luispedro.jpg'
f = mahotas.imread(luispedro_image, as_grey=True)
f = f[:256,:256]
plt.gray()
Show the data:
print("Fraction of zeros in original image: {0}".format(np.mean(f==0)))
plt.imshow(f)
plt.show()

(Source code)

There are no zeros in the original image. We now try a baseline compression
method: save every other pixel and only high-order bits.

direct = f[::2,::2].copy()
direct /= 8
direct = direct.astype(np.uint8)
print("Fraction of zeros in original image (after division by 8): {0}".format(np.mean(direct==0)))
plt.imshow(direct)
plt.show()

(Source code)

There are only a few zeros, though. We have, however, thrown away 75% of the
values. Can we get a better image, using the same number of values, though?

We will transform the image using a Daubechies wavelet (D8) and then discard
the high-order bits.

Transform using D8 Wavelet to obtain transformed image t:
t = mahotas.daubechies(f,'D8')

Discard low-order bits:
t /= 8
t = t.astype(np.int8)
print("Fraction of zeros in transform (after division by 8): {0}".format(np.mean(t==0)))
plt.imshow(t)
plt.show()

(Source code)

This has 60% zeros! What does the reconstructed image look like?

Let us look at what this looks like
r = mahotas.idaubechies(t, 'D8')
plt.imshow(r)
plt.show()

(Source code)

This is a pretty good reduction without much quality loss. We can go further and
discard small values in the transformed space. Also, let’s make the remaining
values even smaller in magnitude.

Now, this will be 77% of zeros, with the remaining being small values. This
image would compress very well as a lossless image and we could reconstruct the
full image after transmission. The quality is certainly higher than just
keeping every fourth pixel and low-order bits.

tt = soft_threshold(t, 12)
print("Fraction of zeros in transform (after division by 8 & soft thresholding): {0}".format(np.mean(tt==0)))
Let us look again at what we have:
rt = mahotas.idaubechies(tt, 'D8')
plt.imshow(rt)

(Source code)

What About the Borders?

In this example, we can see some artifacts at the border. We can use
wavelet_center and wavelet_decenter to handle borders to correctly:

fc = mahotas.wavelet_center(f)
t = mahotas.daubechies(fc, 'D8')
r = mahotas.idaubechies(fc, 'D8')
rd = mahotas.wavelet_decenter(r, fc.shape)

Now, rd is equal (except for rounding) to fc without any border effects.

API Documentation

A package for computer vision in Python.

Main Features

	features

	Compute global and local features (several submodules, include SURF and Haralick features)

	convolve

	Convolution and wavelets

	morph

	Morphological features. Most are available at the mahotas level, include erode(), dilate()...

	watershed

	Seeded watershed implementation

	imread/imsave

	read/write image

Citation:

Coelho, Luis Pedro, 2013. Mahotas: Open source software for scriptable
computer vision. Journal of Open Research Software, 1:e3, DOI:
http://dx.doi.org/10.5334/jors.ac

	
mahotas.haar(f, preserve_energy=True, inline=False)

	Haar transform

	Parameters :	f : 2-D ndarray

Input image

preserve_energy : bool, optional

Whether to normalise the result so that energy is preserved (the
default).

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	ihaar

	function Reverse Haar transform

	
mahotas.ihaar(f, preserve_energy=True, inline=False)

	Reverse Haar transform

ihaar(haar(f)) is more or less equal to f (equal, except for
possible rounding issues).

	Parameters :	f : 2-D ndarray

Input image. If it is an integer image, it is converted to floating
point (double).

preserve_energy : bool, optional

Whether to normalise the result so that energy is preserved (the
default).

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

	Returns :	f : ndarray

See also

	haar

	function Forward Haar transform

	
mahotas.daubechies(f, code, inline=False)

	Daubechies wavelet transform

This function works best if the image sizes are powers of 2!

	Parameters :	f : ndarray

2-D image

code : str

One of ‘D2’, ‘D4’, ... ‘D20’

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	haar

	function Haar transform (equivalent to D2)

	
mahotas.idaubechies(f, code, inline=False)

	Daubechies wavelet inverse transform

	Parameters :	f : ndarray

2-D image

code : str

One of ‘D2’, ‘D4’, ... ‘D20’

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	haar

	function Haar transform (equivalent to D2)

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Distance Transform

The example in this section is present in the source under
mahotas/demos/distance.py.

We start with an image, a black&white image that is mostly black except for two
white spots:

import numpy as np
import mahotas

f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False

(Source code)

There is a simple distance() function which computes the distance map:

import mahotas
dmap = mahotas.distance(f)

Now dmap[y,x] contains the squared euclidean distance of the pixel (y,x)
to the nearest black pixel in f. If f[y,x] == True, then dmap[y,x] ==
0.

from __future__ import print_function

import pylab as p
import numpy as np
import mahotas

f = np.ones((256,256), bool)
f[200:,240:] = False
f[128:144,32:48] = False
f is basically True with the exception of two islands: one in the lower-right
corner, another, middle-left

dmap = mahotas.distance(f)
p.imshow(dmap)
p.show()

(Source code)

Distance Transform and Watershed

The distance transform is often combined with the watershed for segmentation.
Here is an example (which is available with the source in the
mahotas/demos/ directory as nuclear_distance_watershed.py).

(Source code)

The code is not very complex. Start by loading the image and preprocessing it
with a Gaussian blur:

import mahotas
nuclear = mahotas.imread('mahotas/demos/data/nuclear.png')
nuclear = nuclear[:,:,0]
nuclear = mahotas.gaussian_filter(nuclear, 1.)
threshed = (nuclear > nuclear.mean())

Now, we compute the distance transform:

distances = mahotas.stretch(mahotas.distance(threshed))

We find and label the regional maxima:

Bc = np.ones((9,9))
maxima = mahotas.morph.regmax(distances, Bc=Bc)
spots,n_spots = mahotas.label(maxima, Bc=Bc)

Finally, to obtain the image above, we invert the distance transform (because
of the way that cwatershed is defined) and compute the watershed:

surface = (distances.max() - distances)
areas = mahotas.cwatershed(surface, spots)
areas *= threshed

We used a random colormap with a black background for the final image. This is
achieved by:

import random
from matplotlib import colors as c
colors = map(cm.jet,range(0, 256, 4))
random.shuffle(colors)
colors[0] = (0.,0.,0.,1.)
rmap = c.ListedColormap(colors)
imshow(areas, cmap=rmap)
show()

API Documentation

A package for computer vision in Python.

Main Features

	features

	Compute global and local features (several submodules, include SURF and Haralick features)

	convolve

	Convolution and wavelets

	morph

	Morphological features. Most are available at the mahotas level, include erode(), dilate()...

	watershed

	Seeded watershed implementation

	imread/imsave

	read/write image

Citation:

Coelho, Luis Pedro, 2013. Mahotas: Open source software for scriptable
computer vision. Journal of Open Research Software, 1:e3, DOI:
http://dx.doi.org/10.5334/jors.ac

	
mahotas.distance(bw, metric='euclidean2')

	Computes the distance transform of image bw:

dmap[i,j] = min_{i', j'} { (i-i')**2 + (j-j')**2 | !bw[i', j'] }

That is, at each point, compute the distance to the background.

If there is no background, then a very high value will be returned in all
pixels (this is a sort of infinity).

	Parameters :	bw : 2d-ndarray

If boolean, False will denote the background and True the
foreground. If not boolean, this will be interpreted as bw != 0
(this way you can use labeled images without any problems).

metric : str, optional

one of ‘euclidean2’ (default) or ‘euclidean’

	Returns :	dmap : ndarray

distance map

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Polygon Utitilities

Drawing

Mahotas is not a package to generate images, but there are a few simple
functions to draw lines and polygons on an image (the target image is known as
the canvas in this documentation).

The simplest function is line: Give it two points and it draws a line
between them. The implementation is simple, and in Python, so it will be slow
for many complex usage.

The main purpose of these utilities is to aid debugging and visualisation. If
you need to generate fancy graphs, look for packages such as matplotlib [http://matplotlib.sf.net].

Convex Hull

Convex hull functions are a more typical image processing feature. Mahotas has
a simple one, called convexhull. Given a boolean image (or anything that
will get interpreted as a boolean image), it finds the convex hull of all its
on points.

The implementation is in C++, so it is fast.

A companion function fill_convexhull returns the convex hull as a binary
image.

API Documentation

	
mahotas.polygon.line((y0, x0), (y1, x1), canvas, color=1)

	Draw a line

	Parameters :	p0 : pair of integers

first point

p1 : pair of integers

second point

canvas : ndarray

where to draw, will be modified in place

color : integer, optional

which value to store on the pixels (default: 1)

	
mahotas.polygon.fill_polygon([(y0, x0), (y1, x1), ...], canvas, color=1)

	Draw a filled polygon in canvas

	Parameters :	polygon : list of pairs

a list of (y,x) points

canvas : ndarray

where to draw, will be modified in place

color : integer, optional

which colour to use (default: 1)

	
mahotas.polygon.convexhull(bwimg)

	Compute the convex hull as a polygon

	Parameters :	bwimg : ndarray

input image (interpreted as boolean). Only 2D arrays are supported.

	Returns :	hull : ndarray

Set of (y,x) coordinates of hull corners

	
mahotas.polygon.fill_convexhull(bwimg)

	Compute the convex hull and return it as a binary mask

	Parameters :	bwimage : input image (interpreted as boolean)

	Returns :	hull : image of same size and dtype as bwimg with the hull filled in.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Features

By features we mean, basically, numerical functions of the image. That is, any
method that gives me a number from the image, I can call it a feature.
Ideally, these should be meaningful.

We can classify features into two types:

	global

	These are a function of the whole image.

	local

	These have a position and are a function of a local image region.

Mahotas supports both types.

The classification tutorial illustrates the
usefulness of feature computation.

Global features

Haralick features

These are texture features, based on the adjancency matrix (the adjacency
matrix stores in position (i,j) the number of times that a pixel takes the
value i next to a pixel with the value j. Given different ways to
define next to, you obtain slightly different variations of the features.
Standard practice is to average them out across the directions to get some
rotational invariance.

They can be computed for 2-D or 3-D images and are available in the
mahotas.features.haralick module.

Only the first 13 features are implemented. The last (14th) feature is normally
considered to be unstable, although it is not clear to me why this is.
(See this unanswered question on Cross-validated [http://stats.stackexchange.com/questions/9763/what-is-this-maximum-correlation-coefficient]).

Local Binary Patterns

Local binary patterns (LBP) are a more recent set of features. Each pixel is
looked at individually. Its neighbourhood is analysed and summarised by a
single numeric code. The normalised histogram across all the pixels in the
image is the final set of features.

Again, this is an attempt at capturing texture. LBPs are insensitive to
orientation and to illumination (scaling).

Threshold Adjancency Statistics

Threshold adjancency statistics (TAS) are a recent innovation too. In the
original version, they have fixed parameters, but we have adapted them to
parameter-free versions (see Structured Literature Image Finder: Extracting
Information from Text and Images in Biomedical Literature [http://dx.doi.org/10.1007/978-3-642-13131-8_4] by Coelho et al. for a
reference). Mahotas supports both.

Zernike Moments

Zernike moments are not a texture feature, but rather a global measure of
how the mass is distributed.

Local features

SURF: Speeded-Up Robust Features

Speeded-Up Robust Features (SURF) have both a location (pixel coordinates)
and a scale (natural size) as well as a descriptor (the local features).

Read more about SURF.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Local Binary Patterns

New in version 0.7: LBPs are available before, but an important bug was fixed in 0.7. It is
highly recommended that you never use the older version.

Local binary patterns depend on the local region around each pixel. See the
diagram below:

[image: Neighbourhood illustration](Image reference: Wikipedia [http://en.wikipedia.org/wiki/Local_binary_patterns])

The reference pixel is in red, at the centre. A number of points are defined at
a distance r from it. These are the green points. As you go from left to
right, the number of green points increases.

The “pattern” in the name is the relationship of the value at the green points
when compared to the central red point. We call it a binary pattern because all
that is taken into account is whether the value at the green point is greater
than the value at the red point.

As you can see, the green points do not necessarily fall exactly on another
pixel, so we need to use interpolation to find a value for the green points.

API Documentation

The mahotas.features.lb module contains the lbp function which
implements LBPs.

	
mahotas.features.lbp.lbp(image, radius, points, ignore_zeros=False)

	Compute Linear Binary Patterns

The return value is a histogram of feature counts, where position i
corresponds to the number of pixels that had code i. The codes are
compressed so that impossible codes are not used. Therefore, this is the
i``th feature, not just the feature with binary code ``i.

	Parameters :	image : ndarray

input image (2-D numpy ndarray)

radius : number (integer or floating point)

radius (in pixels)

points : integer

nr of points to consider

ignore_zeros : boolean, optional

whether to ignore zeros (default: False)

	Returns :	features : 1-D numpy ndarray

histogram of features. See above for a caveat on the interpretation of
these.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Speeded-Up Robust Features

New in version 0.6.1: SURF is only available starting in version 0.6.1, with an important bugfix
in version 0.6.2.

New in version 0.8: In version 0.8, some of the inner functions are now in mahotas.features.surf
instead of mahotas.surf

Speeded-Up Robust Features (SURF) are a recent innnovation in the local
features family. There are two steps to this algorithm:

	Detection of interest points.

	Description of interest points.

The function mahotas.features.surf.surf combines the two steps:

import numpy as np
from mahotas.features import surf

f = ... # input image
spoints = surf.surf(f)
print "Nr points:", len(spoints)

Given the results, we can perform a simple clustering using, for example, milk [http://luispedro.org/software/milk] (we could have used any other system,
of course; having written milk, I am most familiar with it):

try:
 import milk

 # spoints includes both the detection information (such as the position
 # and the scale) as well as the descriptor (i.e., what the area around
 # the point looks like). We only want to use the descriptor for
 # clustering. The descriptor starts at position 5:
 descrs = spoints[:,5:]

 # We use 5 colours just because if it was much larger, then the colours
 # would look too similar in the output.
 k = 5
 values, _ = milk.kmeans(descrs, k)
 colors = np.array([(255-52*i,25+52*i,37**i % 101) for i in xrange(k)])
except:
 values = np.zeros(100)
 colors = [(255,0,0)]

So we are assigning different colours to each of the possible

The helper surf.show_surf draws coloured polygons around the
interest points:

f2 = surf.show_surf(f, spoints[:100], values, colors)
imshow(f2)
show()

Running the above on a photo of luispedro, the author of mahotas yields:

from __future__ import print_function
import numpy as np
import mahotas
from mahotas.features import surf
from pylab import *

from os import path

try:
 luispedro_image = path.join(
 path.dirname(path.abspath(__file__)),
 'data',
 'luispedro.jpg')
except NameError:
 luispedro_image = 'data/luispedro.jpg'

f = mahotas.imread(luispedro_image, as_grey=True)
f = f.astype(np.uint8)
spoints = surf.surf(f, 4, 6, 2)
print("Nr points:", len(spoints))

try:
 import milk
 descrs = spoints[:,5:]
 k = 5
 values, _ =milk.kmeans(descrs, k)
 colors = np.array([(255-52*i,25+52*i,37**i % 101) for i in range(k)])
except:
 values = np.zeros(100)
 colors = np.array([(255,0,0)])

f2 = surf.show_surf(f, spoints[:100], values, colors)
imshow(f2)
show()

(Source code)

API Documentation

The mahotas.features.surf module contains separate functions for all the steps in
the SURF pipeline.

	
mahotas.features.surf.integral(f, in_place=False, dtype=<type 'numpy.float64'>)

	fi = integral(f, in_place=False, dtype=np.double):

Compute integral image

	Parameters :	f : ndarray

input image. Only 2-D images are supported.

in_place : bool, optional

Whether to overwrite f (default: False).

dtype : dtype, optional

dtype to use (default: double)

	Returns :	fi : ndarray of dtype of same shape as f

The integral image

	
mahotas.features.surf.surf(f, nr_octaves=4, nr_scales=6, initial_step_size=1, threshold=0.1, max_points=1024, descriptor_only=False)

	points = surf(f, nr_octaves=4, nr_scales=6, initial_step_size=1, threshold=0.1, max_points=1024, descriptor_only=False):

Run SURF detection and descriptor computations

Speeded-Up Robust Features (SURF) are fast local features computed at
automatically determined keypoints.

	Parameters :	f : ndarray

input image

nr_octaves : integer, optional

Nr of octaves (default: 4)

nr_scales : integer, optional

Nr of scales (default: 6)

initial_step_size : integer, optional

Initial step size in pixels (default: 1)

threshold : float, optional

Threshold of the strength of the interest point (default: 0.1)

max_points : integer, optional

Maximum number of points to return. By default, return at most 1024
points. Note that the number may be smaller even in the case where
there are that many points. This is a side-effect of the way the
threshold is implemented: only max_points are considered, but some
of those may be filtered out.

descriptor_only : boolean, optional

If descriptor_only, then returns only the 64-element descriptors

	Returns :	points : ndarray of double, shape = (N, 6 + 64)

N is nr of points. Each point is represented as
(y,x,scale,score,laplacian,angle, D_0,...,D_63) where y,x,scale is
the position, angle the orientation, score and laplacian the
score and sign of the detector; and D_i is the descriptor

If descriptor_only, then only the *D_i*s are returned and the array
has shape (N, 64)!

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Classification Using Mahotas

New in version 0.8: Before version 0.8, texture was under mahotas, not under mahotas.features

Here is an example of using mahotas and milk [http://luispedro.org/software/milk]
for image classification (but most of the code can easily be adapted to use
another machine learning package). I assume that there are three important
directories: positives/ and negatives/ contain the manually labeled
examples, and the rest of the data is in an unlabeled/ directory.

Here is the simple algorithm:

	Compute features for all of the images in positives and negatives

	learn a classifier

	use that classifier on the unlabeled images

In the code below I used jug [http://luispedro.org/software/jug] to give you
the possibility of running it on multiple processors, but the code also works
if you remove every line which mentions TaskGenerator.

We start with a bunch of imports:

from glob import glob
import mahotas
import mahotas.features
import milk
from jug import TaskGenerator

Now, we define a function which computes features. In general, texture features
are very fast and give very decent results:

@TaskGenerator
def features_for(imname):
 img = mahotas.imread(imname)
 return mahotas.features.haralick(img).mean(0)

mahotas.features.haralick returns features in 4 directions. We just take
the mean (sometimes you use the spread ptp() too).

Now a pair of functions to learn a classifier and apply it. These are just
milk functions:

@TaskGenerator
def learn_model(features, labels):
 learner = milk.defaultclassifier()
 return learner.train(features, labels)

@TaskGenerator
def classify(model, features):
 return model.apply(features)

We assume we have three pre-prepared directories with the images in jpeg
format. This bit you will have to adapt for your own settings:

positives = glob('positives/*.jpg')
negatives = glob('negatives/*.jpg')
unlabeled = glob('unlabeled/*.jpg')

Finally, the actual computation. Get features for all training data and learn a
model:

features = map(features_for, negatives + positives)
labels = [0] * len(negatives) + [1] * len(positives)

model = learn_model(features, labels)

labeled = [classify(model, features_for(u)) for u in unlabeled]

This uses texture features, which is probably good enough, but you can play
with other features in mahotas.features if you’d like (or try
mahotas.surf, but that gets more complicated).

(This was motivated by a question on Stackoverflow [http://stackoverflow.com/questions/5426482/using-pil-to-detect-a-scan-of-a-blank-page/5505754]).

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Morphological Operators

New in version 0.8: open() & close() were added in version 0.8

Morphological operators were the first operations in mahotas (back then, it was
even, briefly, just a single C++ module called morph). Since then, mahotas
has grown a lot. This module, too, has grown and acquired more morphological
operators as well as being optimised for speed.

Let us first select an interesting image

(Source code)

Dilation & Erosion

Dilation [http://en.wikipedia.org/wiki/Dilation_(morphology)] and erosion [http://en.wikipedia.org/wiki/Erosion_(morphology)] are two very basic
operators (mathematically, you only need one of them as you
can define the erosion as dilation of the negative or vice-versa).

These operations are available in the mahotas.morph module:

mahotas.morph.dilate(eye)

Dilation is, intuitively, making positive areas “fatter”:

(Source code)

mahotas.morph.erode(eye)

Erosion, by contrast, thins them out:

(Source code)

Mahotas supports greyscale erosion and dilation (depending on the dtype of
the arguments) and you can specify any structuring element you wish (including
non-flat ones). By default, a 1-cross is used:

if no structure-element is passed, use a cross:
se = np.array([
 [0, 1, 0],
 [1, 1, 1],
 [0, 1, 0]], bool)

However, you can use whatever structuring element you want:

se = np.array([
 [1, 1, 0],
 [1, 1, 1],
 [0, 1, 1]], bool)
dilated = mahotas.morph.dilate(eye, se)
eroded = mahotas.morph.erode(eye, se)

Note that when you pass it a non-boolean array as the first argument, you will
get grescale erosion. Mahotas supports full grescale erosion, including
arbitrary, flat or non-flat, structuring elements).

Close & Open

Closing and opening are based on erosion and dilation. Again, they work in
greyscale and can use an arbitrary structure element.

Here is closing:

mahotas.morph.close(eye)

(Source code)

And here is opening:

mahotas.morph.open(eye)

(Source code)

Both close and open take an optional structuring element as a second
argument:

mahotas.morph.open(eye, se)

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Input/Output with Mahotas

Mahotas does not have any builtin support for input/output. However, it wraps a
few other libraries that do. The result is that you can do:

import mahotas as mh
image = mh.imread('file.png')
mh.imwrite('copy.png', image)

It can use the following backends (it tries them in the following order):

	It prefers imread [https://github.com/luispedro/imread], if it is
available. Imread is a native C++ library which reads images into Numpy
arrays. It supports PNG, JPEG, TIFF, WEBP, BMP, and a few TIFF-based
microscopy formats (LSM and STK).

	It also looks for freeimage [http://freeimage.sourceforge.net/].
Freeimage can read and write many formats. Unfortunately, it is harder to
install and it is not as well-maintained as imread.

	As a final fallback, it tries to use matplotlib [http://matplotlib.org/], which has builtin PNG support and wraps PIL
for other formats.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Frequently Asked Questions

Why did you not simply contribute to scipy.ndimage or scikits.image?

When I started this project (although it wasn’t called mahotas and it was more
of a collection of semi-organised routines than a project), there was no
scikits.image.

In the meanwhile, all these projects have very different internal philosophies.
ndimage is old-school scipy, in C, with macros. scikits.image uses
Cython extensively, while mahotas uses C++ and templates. I don’t want to
use Cython as I find that it is not yet established enough and it cannot (I
believe) be used to write functions that run on multiple types (like with C++
templates). The scipy community does not want to use C++.

I have, on the other hand, taken code from ndimage and ported it to C++ for use
in mahotas. In the process, I feel it is much cleaner code (because you can use
RAII, exceptions, and templates) and I want to keep it that way.

In any case, we all use the same data format: numpy arrays. It is very easy
(trivial, really) to use all the packages together and take whatever functions
you want from each. All the packages use function based interfaces which make
it easy to mix-and-match.

What are the parameters to Local Binary Patterns?

Checkout the documentation on local binary patterns.

I am using mahotas in a scientific publication, is there a citation?

There is a manuscript about mahotas under review. In the meanwhile, only a
pre-print is available at the arXiv [http://arxiv.org/abs/1211.4907]. You
can cite the preprint.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Mahotas Internals

This section is of interest if you are trying to understand how mahotas works
in order to fix something, extend it (patches are always welcome), or use some
of its technology in your projects.

Philosophy

Mahotas should not suck.

This is my main development goal and, if I achieve it, this alone should put
mahotas in the top ten to one percent of software packages.

Mahotas should have no bugs. None. Ever.

Of course, some creep in. So, we settle for the next best thing: Mahotas
should have no **known bugs**. Whenever a bug is discovered, the top priority
is to squash it.

Read the principles of mahotas

C++/Python Division

Mahotas is written in C++, but almost always, you call a Python function which
checks types and then calls the internal function. This is slightly slower, but
it is easier to develop this way (and, for all but the smallest image, it will
not matter).

So each module.py will have its associated _module.cpp.

C++ Templates

The main reason that mahotas is in C++ (and not in pure C) is to use templates.
Almost all C++ functions are actually 2 functions:

	A py_function which uses the Python C/API to get arguments, &c. This is
almost always pure C.

	A template function<dtype> which works for the dtype performing the
actual operation.

So, for example, this is how erode is implemented. py_erode is generic:

PyObject* py_erode(PyObject* self, PyObject* args) {
 PyArrayObject* array;
 PyArrayObject* Bc;
 if (!PyArg_ParseTuple(args,"OO", &array, &Bc)) return NULL;
 PyArrayObject* res_a = (PyArrayObject*)PyArray_SimpleNew(array->nd,array->dimensions,PyArray_TYPE(array));
 if (!res_a) return NULL;
 PyArray_FILLWBYTE(res_a, 0);
#define HANDLE(type) \
 erode<type>(numpy::aligned_array<type>(res_a), numpy::aligned_array<type>(array), numpy::aligned_array<type>(Bc));\

 SAFE_SWITCH_ON_INTEGER_TYPES_OF(array)
#undef HANDLE
 ...

These functions normally contain a lot of boiler-plate code: read the
arguments, perform some sanity checks, perhaps a bit of initialisation, and
then, the switch on the input type with the help of the
SAFE_SWITCH_ON_INTEGER_TYPES_OF() and friends, which call the right
specialisation of the template that does the actual work. In this example
erode implements (binary) erosion:

template<typename T>
void erode(numpy::aligned_array<T> res, numpy::aligned_array<T> array, numpy::aligned_array<T> Bc) {
 gil_release nogil;
 const unsigned N = res.size();
 typename numpy::aligned_array<T>::iterator iter = array.begin();
 filter_iterator<T> filter(res.raw_array(), Bc.raw_array());
 const unsigned N2 = filter.size();
 T* rpos = res.data();

 for (int i = 0; i != N; ++i, ++rpos, filter.iterate_with(iter), ++iter) {
 for (int j = 0; j != N2; ++j) {
 T arr_val = false;
 filter.retrieve(iter, j, arr_val);
 if (filter[j] && !arr_val) goto skip_this_one;
 }
 *rpos = true;
 skip_this_one: continue;
 }
}

The template machinery is not that complicated and the functions using it are
very simple and easy to read. The only downside is that there is some expansion
of code size. Given the small size of these functions however, this is not a
big issue.

In the snippet above, you can see some other C++ machinery:

	gil_release

	This is a RAII object that release the GIL in its constructor and gets it
back in its destructor. Normally, the template function will release the
GIL after the Python-specific code is done.

	array

	This is a thin wrapper around PyArrayObject that knows its type and has
iterators.

	filter_iterator

	This is taken from scipy.ndimage and it is useful to iterate over an
image and use a centered filter around each pixel (it keeps track of all of
the boundary conditions).

The inner loop is as direct an implementation of erosion as one would wish for:
for each pixel in the image, look at its neighbours. If all are true, then set
the corresponding output pixel to true (else, skip it as it has been
initialised to zero).

Most of the functions follow this architecture.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

The Why of mahotas

Principles of Mahotas

Here are the principles of mahotas, in decreasing order of importance:

	Just work

	Well documented

	Fast code

	Simple code

	Minimal dependencies

Just work

The first principle is that things should just work. This means two things:
(1) there should be no bugs, and (2) interfaces should be flexible or fail
well.

To avoid bugs, tests are extensively used. Every reported bug leads to a new
test case, so that it never happens again. New features should at least have a
smoke test (test that runs the feature and verifies some basic properties of
the output).

Interfaces are designed to be as flexible as possible. No specific types are
required unless it is really needed or in performance-enhancing features (such
as using out parameters).

The user should never be able to crash the Python interpreter with mahotas.

Well documented

No public function is without a complete docstring. In addition to that hard
documentation (i.e., information with complete technical detail of every nook
and cranny of the interface), there is also soft documentation (tutorial-like
documentation with examples and higher level reasoning).

Fast code

Performance is a feature.

The code should be as fast as possible without sacrificing generality (see
just work above). This is why C++ templates are used for type independent
code.

Simple code

The code should be simple.

Minimal dependencies

Mahotas tries to avoid dependencies.

Right now, building mahotas depends on a C++ compiler, numpy. These are
unlikely to ever change. To run mahotas, we need numpy. In order to read
images, we need one of (1) imread, (2) FreeImage, or (3) matplotlib.

The imread/freeimage dependency is a soft dependency: everything, except for imread
works without it. The code is written to ensure that import-ing mahotas
without an IO backend will not trigger an error unless the imread() function is
used.

Therefore, once mahotas is compiled, all you really need is numpy. This is
unlikely to ever change.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Contributing

Development happens on github [https://github.com/luispedro/mahotas] and
the preferred contribution method is by forking the repository and issuing a
pull request. Alternatively, just sending a patch to luis@luispedro.org will
work just as well.

If you don’t know git (or another distributed version control system), which is
a fantastic tool in general, there are several good git and github tutorials.
You can start with their official documentation [https://help.github.com/].

If you want to work on the C++ code, you can read the chapter in the internals before you start. Also, read the principles declaration.

Debug Mode

If you compile mahotas in debug mode, then it will run slower but perform a lot
of runtime checks. This is controlled by the DEBUG environment variable.

There are two levels:

	DEBUG=1 This turns on assertions. The code will run slower, but
probably not noticeably slower, except for very large images.

	DEBUG=2 This turns on the assertions and additionally uses the debug
version of the C++ library (this is probably only working if you are using
GCC). Some of the internal code also picks up on this and adds even more
sanity checking. The result will be code that runs much slower as all
operations done through iterators into standard containers are now checked
(including many inner loop operations).

The Makefile that comes with the source helps you:

make clean
make debug
make test

will rebuild in debug mode and run all tests. When you are done testing, use
the fast Make target to get the non-debug build:

make clean
make fast

Using make will not change your environment. The DEBUG variable is set
internally only.

If you don’t know about it, check out ccache [http://ccache.samba.org/]
which is a great tool if you are developing in compiled languages (this is not
specific to mahotas or even Python). It will allow you to quickly perform
make clean; make debug and make clean; make fast so you never get your
builds mixed up.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

Possible Tasks

Here are a few ideas for improving mahotas.

New Features

	HOG [http://en.wikipedia.org/wiki/Histogram_of_oriented_gradients]

	BRISK [http://savvash.blogspot.pt/2011/08/brisk-binary-robust-invariant-scalable.html]

	Canny edge detection [http://en.wikipedia.org/wiki/Canny_edge_detector]

	Hough Transform [http://en.wikipedia.org/wiki/Hough_transform]

	bilateral filtering [http://en.wikipedia.org/wiki/Bilateral_filter]

	Non Local Filtering [http://en.wikipedia.org/wiki/Non-local_means]

	Wiener filtering [http://en.wikipedia.org/wiki/Wiener_filter]

Small Improvements

	something like the overlay function from pymorph [http://luispedro.org/software/pymorph] (or even just copy it over and adapt it to mahotas style).

	H-maxima transform (again, pymorph can provide a basis)

	entropy thresholding [http://en.wikipedia.org/wiki/Thresholding_(image_processing)]

Internals

These can be very complex as they require an understanding of the inner
workings of mahotas, but that does appeal to a certain personality.

	special case 1-D convolution on C-Arrays in C++. The idea is that you can

write a tight inner loop in one dimension:

void multiply(floating* r, const floating* f, const floating a, const int n, const int r_step, const int f_step) {
 for (int i = 0; i != n; ++i) {
 *r += a * *f;
 r += r_step;
 f += f_step;
 }
}

to implement:

r[row] += a* f[row+offset]

and you can call this with all the different values of a and offset
that make up your filter. This would be useful for Guassian filtering.

Tutorials

Mahotas has very good API documentation, but not so many start to finish
tutorials which touch several parts of it (and even other packages, the ability
to seamlessly use other packages in Python is, of course, a good reason to use
it).

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 next |

 	
 previous |

 	mahotas 1.0 documentation

History

1.0 (May 21 2013)

	Fix a few corner cases in texture analysis

	Integrate with travis

	Update citation (include DOI)

0.99 (May 4 2013)

	Make matplotlib a soft dependency

	Add demos.image_path() function

	Add citation() function

This version is 1.0 beta.

0.9.8 (April 22 2013)

	Use matplotlib as IO backend (fallback only)

	Compute dense SURF features

	Fix sobel edge filtering (post-processing)

	Faster 1D convultions (including faster Gaussian filtering)

	Location independent tests (run mahotas.tests.run() anywhere)

	Add labeled.is_same_labeling function

	Post filter SLIC for smoother regions

	Fix compilation warnings on several platforms

0.9.7 (February 03 2013)

	Add haralick_features function

	Add out parameter to morph functions which were missing it

	Fix erode() & dilate() with empty structuring elements

	Special case binary erosion/dilation in C-Arrays

	Fix long-standing warning in TAS on zero inputs

	Add verbose argument to tests.run()

	Add circle_se to morph

	Allow loc(max|min) to take floating point inputs

	Add Bernsen local thresholding (bernsen and gbernsen functions)

0.9.6 (December 02 2012)

	Fix distance() of non-boolean images (issue #24 on github)

	Fix encoding issue on PY3 on Mac OS (issue #25 on github)

	Add relabel() function

	Add remove_regions() function in labeled module

	Fix median_filter() on the borders (respect the mode argument)

	Add mahotas.color module for conversion between colour spaces

	Add SLIC Superpixels

	Many improvements to the documentation

0.9.5 (November 05 2012)

	Fix compilation in older G++

	Faster Otsu thresholding

	Python 3 support without 2to3

	Add cdilate function

	Add subm function

	Add tophat transforms (functions tophat_close and tophat_open)

	Add mode argument to euler() (patch by Karol M. Langner)

	Add mode argument to bwperim() & borders() (patch by Karol M. Langner)

0.9.4 (October 10 2012)

	Fix compilation on 32-bit machines (Patch by Christoph Gohlke)

0.9.3 (October 9 2012)

	Fix interpolation (Report by Christoph Gohlke)

	Fix second interpolation bug (Report and patch by Christoph Gohlke)

	Update tests to newer numpy

	Enhanced debug mode (compile with DEBUG=2 in environment)

	Faster morph.dilate()

	Add labeled.labeled_max & labeled.labeled_min (This also led to a refactoring
of the labeled_* code)

	Many documentation fixes

0.9.2 (September 1 2012)

	Fix compilation on Mac OS X 10.8 (reported by Davide Cittaro)

	Freeimage fixes on Windows by Christoph Gohlke

	Slightly faster _filter implementaiton

0.9.1 (August 28 2012)

	Python 3 support (you need to use 2to3)

	Haar wavelets (forward and inverse transform)

	Daubechies wavelets (forward and inverse transform)

	Corner case fix in Otsu thresholding

	Add soft_threshold function

	Have polygon.convexhull return an ndarray (instead of a list)

	Memory usage improvements in regmin/regmax/close_holes (first reported
as issue #9 by thanasi)

0.9 (July 16 2012)

	Auto-convert integer to double on gaussian_filter (previously, integer
values would result in zero-valued outputs).

	Check for integer types in (reg|loc)(max|min)

	Use name out instead of output for output arguments. This matches
Numpy better

	Switched to MIT License

0.8.1 (June 6 2012)

	Fix gaussian_filter bug when order argument was used (reported by John Mark

Agosta)
- Add morph.cerode
- Improve regmax() & regmin(). Rename previous implementations to locmax() &
locmin()
- Fix erode() on non-contiguous arrays

0.8 (May 7 2012)

	Move features to submodule

	Add morph.open function

	Add morph.regmax & morph.regmin functions

	Add morph.close function

	Fix morph.dilate crash

0.7.3 (March 14 2012)

	Fix installation of test data

	Greyscale erosion & dilation

	Use imread module (if available)

	Add output argument to erode() & dilate()

	Add 14th Haralick feature (patch by MattyG) — currently off by default

	Improved zernike interface (zernike_moments)

	Add remove_bordering to labeled

	Faster implementation of bwperim

	Add roundness shape feature

0.7.2 (February 13 2012)

There were two minor additions:

	Add as_rgb (especially useful for interactive use)

	Add Gaussian filtering (from scipy.ndimage)

And a few bugfixes:

	Fix type bug in 32 bit machines (Bug report by Lech Wiktor Piotrowski)

	Fix convolve1d

	Fix rank_filter

0.7.1 (January 6 2012)

The most important change fixed compilation on Mac OS X

Other changes:

	Add convolve1d

	Check that convolution arguments have right dimensions (instead of
crashing)

	Add descriptor_only argument to surf.descriptors

	Specify all function signatures on freeimage.py

For version 0.7 (Dec 5 2011):

The big change was that the dependency on scipy was removed. As part of this
process, the interpolate submodule was added. A few important bug fixes as
well.

	Allow specification of centre in Zernike moment computation

	Fix Local Binary Patterns

	Remove dependency on scipy

	Add interpolate module (from scipy.ndimage)

	Add labeled_sum & labeled_sizes

	gvoronoi no longer depends on scipy

	mahotas is importable without scipy

	Fix bugs in 2D TAS (reported by Jenn Bakal)

	Support for 1-bit monochrome image loading with freeimage

	Fix GIL handling on errors (reported by Gareth McCaughan)

	Fix freeimage for 64-bit computers

For version 0.6.6 (August 8 2011):
- Fix fill_polygon bug (fix by joferkington)
- Fix Haralick feature 6 (fix by Rita Simões)
- Implement morph.get_structuring_element for ndim > 2. This implies that
functions such as label() now also work in multiple dimensions
- Add median filter & rank_filter functions
- Add template_match function
- Refactor by use of mahotas.internal
- Better error message for when the compiled modules cannot be loaded
- Update contact email. All docs in numpydoc format now.

For version 0.6.5:
- Add max_points & descriptor_only arguments to mahotas.surf
- Fix haralick for 3-D images (bug report by Rita Simões)
- Better error messages
- Fix hit&miss for non-boolean inputs
- Add label() function

For version 0.6.4:

	Fix bug in cwatershed() when using return_lines=1

	Fix bug in cwatershed() when using equivalent types for image and markers

	Move tests to mahotas.tests and include them in distribution

	Include ChangeLog in distribution

	Fix compilation on the Mac OS

	Fix compilation warnings on gcc

For version 0.6.3:

	Improve mahotas.stretch() function

	Fix corner case in surf (when determinant was zero)

	threshold argument in mahotas.surf

	imreadfromblob() & imsavetoblob() functions

	max_points argument for mahotas.surf.interest_points()

	Add mahotas.labeled.borders function

For version 0.6.2:

Bugfix release:

	Fix memory leak in _surf

	More robust searching for freeimage

	More functions in mahotas.surf() to retrieve intermediate results

	Improve compilation on Windows (patches by Christoph Gohlke)

For version 0.6.1:

	Release the GIL in morphological functions

	Convolution

	just_filter option in edge.sobel()

	mahotas.labeled functions

	SURF local features

For version 0.6:

	Improve Local Binary patterns (faster and better interface)

	Much faster erode() (10x faster)

	Faster dilate() (2x faster)

	TAS for 3D images

	Haralick for 3D images

Support

Website: http://luispedro.org/software/mahotas

API Docs: http://packages.python.org/mahotas/

Mailing List: Use the pythonvision mailing list [http://groups.google.com/group/pythonvision?pli=1] for questions, bug
submissions, etc.

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	
 previous |

 	mahotas 1.0 documentation

Full API Documentation

A package for computer vision in Python.

Main Features

	features

	Compute global and local features (several submodules, include SURF and Haralick features)

	convolve

	Convolution and wavelets

	morph

	Morphological features. Most are available at the mahotas level, include erode(), dilate()...

	watershed

	Seeded watershed implementation

	imread/imsave

	read/write image

Citation:

Coelho, Luis Pedro, 2013. Mahotas: Open source software for scriptable
computer vision. Journal of Open Research Software, 1:e3, DOI:
http://dx.doi.org/10.5334/jors.ac

	
mahotas.as_rgb(r, g, b)

	Returns an RGB image

If any of the channels is None, that channel is set to zero.

	Parameters :	r,g,b : array-like, optional

The channels can be of any type or None.
At least one must be not None and all must have the same shape.

	Returns :	rgb : ndarray

RGB ndarray

	
mahotas.bbox(img)

	Calculate the bounding box of image img.

	Parameters :	img : ndarray

Any integer image type

	Returns :	min1,max1,min2,max2 : int,int,int,int

These are such that img[min1:max1, min2:max2] contains all non-zero
pixels

	
mahotas.border(labeled, i, j, Bc={3x3 cross}, out={np.zeros(labeled.shape, bool)}, always_return=True)

	Compute the border region between i and j regions.

A pixel is on the border if it has value i (or j) and a pixel in its
neighbourhood (defined by Bc) has value j (or i).

	Parameters :	labeled : ndarray of integer type

input labeled array

i : integer

j : integer

Bc : structure element, optional

out : ndarray of same shape as labeled, dtype=bool, optional

where to store the output. If None, a new array is allocated

always_return : bool, optional

if false, then, in the case where there is no pixel on the border,
returns None. Otherwise (the default), it always returns an array
even if it is empty.

	Returns :	border_img : boolean ndarray

Pixels are True exactly where there is a border between i and j in labeled

	
mahotas.borders(labeled, Bc={3x3 cross}, out={np.zeros(labeled.shape, bool)})

	Compute border pixels

A pixel is on a border if it has value i and a pixel in its neighbourhood
(defined by Bc) has value j, with i != j.

	Parameters :	labeled : ndarray of integer type

input labeled array

Bc : structure element, optional

out : ndarray of same shape as labeled, dtype=bool, optional

where to store the output. If None, a new array is allocated

mode : {‘reflect’, ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’ [default], ‘ignore’}

How to handle borders

	Returns :	border_img : boolean ndarray

Pixels are True exactly where there is a border in labeled

	
mahotas.bwperim(bw, n=4)

	Find the perimeter of objects in binary images.

A pixel is part of an object perimeter if its value is one and there
is at least one zero-valued pixel in its neighborhood.

By default the neighborhood of a pixel is 4 nearest pixels, but
if n is set to 8 the 8 nearest pixels will be considered.

	Parameters :	bw : ndarray

A black-and-white image (any other image will be converted to black & white)

n : int, optional

Connectivity. Must be 4 or 8 (default: 4)

mode : {‘reflect’, ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’ [default], ‘ignore’}

How to handle borders

	Returns :	perim : ndarray

A boolean image

See also

	borders

	function This is a more generic function

	
mahotas.cdilate(f, g, Bc={3x3 cross}, n=1)

	Conditional dilation

cdilate creates the image y by dilating the image f by the
structuring element Bc conditionally to the image g. This
operator may be applied recursively n times.

	Parameters :	f : Gray-scale (uint8 or uint16) or binary image.

g : Conditioning image. (Gray-scale or binary).

Bc : Structuring element (default: 3x3 cross)

n : Number of iterations (default: 1)

	Returns :	y : Image

	
mahotas.center_of_mass(img, labels=None) x0, x1, ... = center_of_mass(img, labels=None)

	Returns the center of mass of img.

If labels is given, then it returns L centers of mass, one for each
region identified by labels (including region 0).

	Parameters :	img : ndarray

labels : ndarray

A labeled array

	Returns :	coords : ndarray

if not labels, a 1-ndarray of coordinates (size = len(img.shape)),
if labels, a 2-ndarray of coordinates (shape = (labels.max()+1) xlen(img.shape))

	
mahotas.cerode(f, g, Bc={3x3 cross}, out={np.empty_as(A)})

	Conditional morphological erosion.

The type of operation depends on the dtype of A! If boolean, then
the erosion is binary, else it is greyscale erosion. In the case of
greyscale erosion, the smallest value in the domain of Bc is
interpreted as -Inf.

	Parameters :	f : ndarray

input image

g : ndarray

conditional image

Bc : ndarray, optional

Structuring element. By default, use a cross (see
get_structuring_elem for details on the default).

	Returns :	conditionally_eroded : ndarray

eroded version of f conditioned on g

See also

	erode

	function Unconditional version of this function

dilate

	
mahotas.close(f, Bc={3x3 cross}, out={np.empty_like(f)})

	Morphological closing.

close creates the image y by the morphological closing of the
image f by the structuring element Bc. In the binary case, the
closing by a structuring element Bc may be interpreted as the
intersection of all the binary images that contain the image f
and have a hole equal to a translation of Bc. In the gray-scale
case, there is a similar interpretation taking the functions
umbra.

	Parameters :	f : ndarray

Gray-scale (uint8 or uint16) or binary image.

Bc : ndarray, optional

Structuring element. (Default: 3x3 elementary cross).

out : ndarray, optional

Output array

	Returns :	y : ndarray

See also

	open

	function

	
mahotas.close_holes(ref, Bc=None)

	closed = close_holes(ref, Bc=None):

Close Holes

	Parameters :	ref : ndarray

Reference image. This should be a binary image.

Bc : structuring element, optional

Default: 3x3 cross

	Returns :	closed : ndarray

superset of ref (i.e. with closed holes)

	
mahotas.convolve(f, weights, mode='reflect', cval=0.0, out={new array})

	Convolution of f and weights

Convolution is performed in doubles to avoid over/underflow, but the
result is then cast to f.dtype.

	Parameters :	f : ndarray

input. Any dimension is supported

weights : ndarray

weight filter. If not of the same dtype as f, it is cast

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as f as well as be
C-contiguous.

	Returns :	convolved : ndarray of same dtype as f

	
mahotas.convolve1d(f, weights, axis, mode='reflect', cval=0.0, out={new array})

	Convolution of f and weights along axis axis.

Convolution is performed in doubles to avoid over/underflow, but the
result is then cast to f.dtype.

	Parameters :	f : ndarray

input. Any dimension is supported

weights : 1-D ndarray

weight filter. If not of the same dtype as f, it is cast

axis : int

Axis along which to convolve

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as f as well as be
C-contiguous.

	Returns :	convolved : ndarray of same dtype as f

See also

	convolve

	function generic convolution

	
mahotas.croptobbox(img, border=0)

	Returns a version of img cropped to the image’s bounding box

	Parameters :	img : ndarray

Integer image array

border : int, optional

whether to add a border (default no border)

	Returns :	nimg : ndarray

A subimage of img.

	
mahotas.cwatershed(surface, markers, Bc=None, return_lines=False) W, WL = cwatershed(surface, markers, Bc=None, return_lines=True)

	Seeded Watershed

	Parameters :	surface : image

markers : image

initial markers (must be a labeled image)

Bc : ndarray, optional

structuring element (default: 3x3 cross)

return_lines : boolean, optional

whether to return separating lines (in addition to regions)

	Returns :	W : Regions image (i.e., W[i,j] == region for pixel (i,j))

WL : Lines image (if return_lines==True)

	
mahotas.daubechies(f, code, inline=False)

	Daubechies wavelet transform

This function works best if the image sizes are powers of 2!

	Parameters :	f : ndarray

2-D image

code : str

One of ‘D2’, ‘D4’, ... ‘D20’

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	haar

	function Haar transform (equivalent to D2)

	
mahotas.dilate(A, Bc={3x3 cross}, out={np.empty_like(A)})

	Morphological dilation.

The type of operation depends on the dtype of A! If boolean, then
the dilation is binary, else it is greyscale dilation. In the case of
greyscale dilation, the smallest value in the domain of Bc is
interpreted as +Inf.

	Parameters :	A : ndarray of bools

input array

Bc : ndarray, optional

Structuring element. By default, use a cross (see
get_structuring_elem for details on the default).

	Returns :	dilated : ndarray

dilated version of A

See also

erode

	
mahotas.distance(bw, metric='euclidean2')

	Computes the distance transform of image bw:

dmap[i,j] = min_{i', j'} { (i-i')**2 + (j-j')**2 | !bw[i', j'] }

That is, at each point, compute the distance to the background.

If there is no background, then a very high value will be returned in all
pixels (this is a sort of infinity).

	Parameters :	bw : 2d-ndarray

If boolean, False will denote the background and True the
foreground. If not boolean, this will be interpreted as bw != 0
(this way you can use labeled images without any problems).

metric : str, optional

one of ‘euclidean2’ (default) or ‘euclidean’

	Returns :	dmap : ndarray

distance map

	
mahotas.erode(A, Bc={3x3 cross}, out={np.empty_as(A)})

	Morphological erosion.

The type of operation depends on the dtype of A! If boolean, then
the erosion is binary, else it is greyscale erosion. In the case of
greyscale erosion, the smallest value in the domain of Bc is
interpreted as -Inf.

	Parameters :	A : ndarray

input image

Bc : ndarray, optional

Structuring element. By default, use a cross (see
get_structuring_elem for details on the default).

out : ndarray, optional

output array. If used, this must be a C-array of the same dtype as
A. Otherwise, a new array is allocated.

	Returns :	erosion : ndarray

eroded version of A

See also

dilate

	
mahotas.euler(f, n=8)

	Compute the Euler number of image f

The Euler number is also known as the Euler characteristic given that many
other mathematical objects are also known as Euler numbers.

	Parameters :	f : ndarray

A 2-D binary image

n : int, optional

Connectivity, one of (4,8). default: 8

mode : {‘reflect’, ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’ [default]}

How to handle borders

	Returns :	euler_nr : int

Euler number

	
mahotas.fullhistogram(img)

	Return a histogram with bins 0, 1, ..., ``img.max()``.

After calling this function, it will be true that
hist[i] == (img == i).sum(), for all i.

	Parameters :	img : array-like of an unsigned type

input image.

	Returns :	hist : an dnarray of type np.uint32

This will be of size img.max() + 1.

	
mahotas.gaussian_filter(array, sigma, order=0, mode='reflect', cval=0., out={np.empty_like(array)})

	Multi-dimensional Gaussian filter.

	Parameters :	array : ndarray

input array, any dimension is supported. If the array is an integer
array, it will be converted to a double array.

sigma : scalar or sequence of scalars

standard deviation for Gaussian kernel. The standard
deviations of the Gaussian filter are given for each axis as a
sequence, or as a single number, in which case it is equal for
all axes.

order : {0, 1, 2, 3} or sequence from same set, optional

The order of the filter along each axis is given as a sequence
of integers, or as a single number. An order of 0 corresponds
to convolution with a Gaussian kernel. An order of 1, 2, or 3
corresponds to convolution with the first, second or third
derivatives of a Gaussian. Higher order derivatives are not
implemented

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape as array as well as be
C-contiguous. If array is an integer array, this must be a double
array; otherwise, it must have the same type as array.

	Returns :	filtered : ndarray

Filtered version of array

Notes

The multi-dimensional filter is implemented as a sequence of
one-dimensional convolution filters. The intermediate arrays are
stored in the same data type as the output. Therefore, for output
types with a limited precision, the results may be imprecise
because intermediate results may be stored with insufficient
precision.

	
mahotas.gaussian_filter1d(array, sigma, axis=-1, order=0, mode='reflect', cval=0., out={np.empty_like(array)})

	One-dimensional Gaussian filter.

	Parameters :	array : ndarray

input array of a floating-point type

sigma : float

standard deviation for Gaussian kernel (in pixel units)

axis : int, optional

axis to operate on

order : {0, 1, 2, 3}, optional

An order of 0 corresponds to convolution with a Gaussian
kernel. An order of 1, 2, or 3 corresponds to convolution with
the first, second or third derivatives of a Gaussian. Higher
order derivatives are not implemented

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as array as well as be
C-contiguous.

	Returns :	filtered : ndarray

Filtered version of array

	
mahotas.get_structuring_elem(A, Bc)

	Retrieve appropriate structuring element

	Parameters :	A : ndarray

array which will be operated on

Bc : None, int, or array-like

	None:	Then Bc is taken to be 1

	An integer:	
	There are two associated semantics:

	
	connectivity

	Bc[y,x] = [[is |y - 1| + |x - 1| <= Bc_i]]

	count

	Bc.sum() == Bc_i
This is the more traditional meaning (when one writes that
“4-connected”, this is what one has in mind).

Fortunately, the value itself allows one to distinguish between the
two semantics and, if used correctly, no ambiguity should ever occur.

	An array:	This should be of the same nr. of dimensions as A and will
be passed through if of the right type. Otherwise, it will be cast.

	Returns :	Bc_out : ndarray

Structuring element. This array will be of the same type as A,
C-contiguous.

	
mahotas.haar(f, preserve_energy=True, inline=False)

	Haar transform

	Parameters :	f : 2-D ndarray

Input image

preserve_energy : bool, optional

Whether to normalise the result so that energy is preserved (the
default).

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	ihaar

	function Reverse Haar transform

	
mahotas.hitmiss(input, Bc, out=np.zeros_like(input))

	Hit & Miss transform

For a given pixel position, the hit&miss is True if, when Bc is
overlaid on input, centered at that position, the 1 values line up
with ``1``s, while the ``0``s line up with ``0``s (``2``s correspond to
don’t care).

	Parameters :	input : input ndarray

This is interpreted as a binary array.

Bc : ndarray

hit & miss template, values must be one of (0, 1, 2)

out : output array

	Returns :	filtered : ndarray

	
mahotas.idaubechies(f, code, inline=False)

	Daubechies wavelet inverse transform

	Parameters :	f : ndarray

2-D image

code : str

One of ‘D2’, ‘D4’, ... ‘D20’

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

See also

	haar

	function Haar transform (equivalent to D2)

	
mahotas.ihaar(f, preserve_energy=True, inline=False)

	Reverse Haar transform

ihaar(haar(f)) is more or less equal to f (equal, except for
possible rounding issues).

	Parameters :	f : 2-D ndarray

Input image. If it is an integer image, it is converted to floating
point (double).

preserve_energy : bool, optional

Whether to normalise the result so that energy is preserved (the
default).

inline : bool, optional

Whether to write the results to the input image. By default, a new
image is returned. Integer images are always converted to floating
point and copied.

	Returns :	f : ndarray

See also

	haar

	function Forward Haar transform

	
mahotas.imread(filename, as_grey=False)

	Reads an image from file filename

	Parameters :	filename : file name

as_grey : Whether to convert to grey scale image (default: no)

	Returns :	img : ndarray

	
mahotas.imresize(img, nsize, order=3)

	img’ = imresize(img, nsize)

Resizes img

	Parameters :	img : ndarray

nsize : float or tuple(float) or tuple(integers)

	Size of return. Meaning depends on the type

	float: img’.shape[i] = nsize * img.shape[i]
tuple of float: img’.shape[i] = nsize[i] * img.shape[i]
tuple of int: img’.shape[i] = nsize[i]

order : integer, optional

Spline order to use (default: 3)

	Returns :	img’ : ndarray

See also

	scipy.ndimage.zoom

	Similar function

	scipy.misc.pilutil.imresize

	Similar function

	
mahotas.imsave(*args, **kwargs)

	Save an array as in image file.

The output formats available depend on the backend being used.

	Arguments:

	
	fname:

	A string containing a path to a filename, or a Python file-like object.
If format is None and fname is a string, the output
format is deduced from the extension of the filename.

	arr:

	An MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA) array.

	Keyword arguments:

	
	vmin/vmax: [None | scalar]

	vmin and vmax set the color scaling for the image by fixing the
values that map to the colormap color limits. If either vmin or vmax
is None, that limit is determined from the arr min/max value.

	cmap:

	cmap is a colors.Colormap instance, eg cm.jet.
If None, default to the rc image.cmap value.

	format:

	One of the file extensions supported by the active
backend. Most backends support png, pdf, ps, eps and svg.

	origin

	[‘upper’ | ‘lower’] Indicates where the [0,0] index of
the array is in the upper left or lower left corner of
the axes. Defaults to the rc image.origin value.

	dpi

	The DPI to store in the metadata of the file. This does not affect the
resolution of the output image.

	
mahotas.label(array, Bc={3x3 cross}, output={new array})

	Label the array, which is interpreted as a binary array

This is also called connected component labeled, where the connectivity
is defined by the structuring element Bc.

See: http://en.wikipedia.org/wiki/Connected-component_labeling

	Parameters :	array : ndarray

This will be interpreted as binary array

Bc : ndarray, optional

This is the structuring element to use

out : ndarray, optional

Output array. Must be a C-array, of type np.int32

	Returns :	labeled : ndarray

Labeled result

nr_objects : int

Number of objects

	
mahotas.labeled_sum(array, labeled)

	Labeled sum. sum will be an array of size labeled.max() + 1, where
sum[i] is equal to np.sum(array[labeled == i]).

	Parameters :	array : ndarray of any type

labeled : int ndarray

Label map. This is the same type as returned from mahotas.label()

	Returns :	sums : 1-d ndarray of array.dtype

	
mahotas.majority_filter(img, N=3, out={np.empty(img.shape, np.bool)})

	Majority filter

filtered[y,x] is positive if the majority of pixels in the squared of size
N centred on (y,x) are positive.

	Parameters :	img : ndarray

input img (currently only 2-D images accepted)

N : int, optional

size of filter (must be odd integer), defaults to 3.

out : ndarray, optional

Used for output. Must be Boolean ndarray of same size as img

	Returns :	filtered : ndarray

boolean image of same size as img.

	
mahotas.median_filter(f, Bc={square}, mode='reflect', cval=0.0, out={np.empty(f.shape, f.dtype})

	Median filter

	Parameters :	f : ndarray

input. Any dimension is supported

Bc : ndarray or int, optional

Defines the neighbourhood, default is a square of side 3.

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as f as well as be
C-contiguous.

	Returns :	median : ndarray of same type and shape as f

median[i,j] is the median value of the points in f close to (i,j)

	
mahotas.moments(img, p0, p1, cm=(0, 0), convert_to_float=True)

	Returns the p0-p1 moment of image img

The formula computed is

sum_{ij} { img[i,j] (i - c0)**p0 (j - c1)**p1 }

where cm = (c0,c1). If cm is not given, then (0,0) is used.

If image is of an integer type, then it is internally converted to
np.float64, unlesss convert_to_float is False. The reason is that,
otherwise, overflow is likely except for small images. Since this
conversion takes longer than the computation, you can turn it off in case
you are sure that your images are small enough for overflow to be an issue.
Note that no conversion is made if img is of any floating point type.

	Parameters :	img : 2-ndarray

An 2-d ndarray

p0 : float

Power for first dimension

p1 : float

Power for second dimension

cm : (int,int), optional

center of mass (default: 0,0)

convert_to_float : boolean, optional

whether to convert to floating point (default: True)

	Returns :	moment: float :

floating point number

	
mahotas.open(f, Bc={3x3 cross}, out={np.empty_like(f)})

	Morphological opening.

open creates the image y by the morphological opening of the
image f by the structuring element Bc.

In the binary case, the opening by the structuring element Bc may be
interpreted as the union of translations of b included in f. In the
gray-scale case, there is a similar interpretation taking the functions
umbra.

	Parameters :	f : ndarray

Gray-scale (uint8 or uint16) or binary image.

Bc : ndarray, optional

Structuring element (default: 3x3 elementary cross).

out : ndarray, optional

Output array

	Returns :	y : ndarray

See also

	open

	function

	
mahotas.otsu(img, ignore_zeros=False)

	Calculate a threshold according to the Otsu method.

	Parameters :	img : an image as a numpy array.

This should be of an unsigned integer type.

ignore_zeros : Boolean

whether to ignore zero-valued pixels
(default: False)

	Returns :	T : integer

the threshold

	
mahotas.rank_filter(f, Bc, rank, mode='reflect', cval=0.0, out=None)

	Rank filter. The value at ranked[i,j] will be the rank``th largest in
the neighbourhood defined by ``Bc.

	Parameters :	f : ndarray

input. Any dimension is supported

Bc : ndarray

Defines the neighbourhood. Must be explicitly passed, no default.

rank : integer

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as f as well as be
C-contiguous.

	Returns :	ranked : ndarray of same type and shape as f

ranked[i,j] is the ``rank``th value of the points in f close to (i,j)

See also

	median_filter

	A special case of rank_filter

	
mahotas.rc(img, ignore_zeros=False)

	Calculate a threshold according to the Riddler-Calvard method.

	Parameters :	img : ndarray

Image of any type

ignore_zeros : boolean, optional

Whether to ignore zero valued pixels (default: False)

	Returns :	T : float

threshold

	
mahotas.regmax(f, Bc={3x3 cross}, out={np.empty(f.shape, bool)})

	Regional maxima

	Parameters :	f : ndarray

Bc : ndarray, optional

structuring element

out : ndarray, optional

Used for output. Must be Boolean ndarray of same size as f

	Returns :	filtered : ndarray

boolean image of same size as f.

See also

	locmax

	function Local maxima

	
mahotas.regmin(f, Bc={3x3 cross}, out={np.empty(f.shape, bool)})

	Regional minima

	Parameters :	f : ndarray

Bc : ndarray, optional

structuring element

out : ndarray, optional

Used for output. Must be Boolean ndarray of same size as f

	Returns :	filtered : ndarray

boolean image of same size as f.

See also

	locmin

	function Local minima

	
mahotas.sobel(img, just_filter=False)

	Compute edges using Sobel’s algorithm

edges is a binary image of edges computed according to Sobel’s algorithm.

This implementation is tuned to match MATLAB’s implementation.

	Parameters :	img : Any 2D-ndarray

just_filter : boolean, optional

If true, then return the result of filtering the image with the sobel
filters, but do not threashold (default is False).

	Returns :	edges : ndarray

Binary image of edges, unless just_filter, in which case it will be
an array of floating point values.

	
mahotas.stretch(img, arg0=None, arg1=None, dtype=<type 'numpy.uint8'>)

	img’ = stretch(img, [dtype=np.uint8])
img’ = stretch(img, max, [dtype=np.uint8])
img’ = stretch(img, min, max, [dtype=np.uint8])

	Contrast stretch the image to the range [0, max] (first form) or

	[min, max] (second form).

	Parameters :	img : ndarray

input image. It is not modified by this function

min : integer, optional

minimum value for output [default: 0]

max : integer, optional

maximum value for output [default: 255]

dtype : dtype of output,optional

[default: np.uint8]

	Returns :	img’: ndarray :

resulting image. ndarray of same shape as img and type dtype.

	
mahotas.template_match(f, template, mode='reflect', cval=0., out={np.empty_like(f)})

	Match template.

The value at match[i,j] will be the difference (in squared euclidean
terms), between template and a same sized window on f centered on that
point.

	Parameters :	f : ndarray

input. Any dimension is supported

template : ndarray

Template to match. Must be explicitly passed, no default.

mode : {‘reflect’ [default], ‘nearest’, ‘wrap’, ‘mirror’, ‘constant’, ‘ignore’}

How to handle borders

cval : double, optional

If mode is constant, which constant to use (default: 0.0)

out : ndarray, optional

Output array. Must have same shape and dtype as f as well as be
C-contiguous.

	Returns :	match : ndarray of same type and shape as f

match[i,j] is the squared euclidean distance between
f[i-s0:i+s0,j-s1:j+s1] and template (for appropriately defined
s0 and s1).

	
mahotas.thin(binimg)

	Skeletonisation by thinning

	Parameters :	binimg : Binary input image

	Returns :	skel : Skeletonised version of binimg

	
mahotas.wavelet_center(f, border=0, dtype=float, cval=0.0)

	fc is a centered version of f with a shape that is composed of
powers of 2.

	Parameters :	f : ndarray

input image

border : int, optional

The border to use (default is no border)

dtype : type, optional

Type of fc

cval : float, optional

Which value to fill the border with (default is 0)

	Returns :	fc : ndarray

See also

	wavelet_decenter

	function Reverse function

	
mahotas.wavelet_decenter(w, oshape, border=0)

	Undoes the effect of wavelet_center

	Parameters :	w : ndarray

Wavelet array

oshape : tuple

Desired shape

border : int, optional

The desired border. This must be the same value as was used for
wavelet_center

	Returns :	f : ndarray

This will have shape oshape

See also

	wavelet_center

	function Forward function

	
mahotas.features.haralick(f, ignore_zeros=False, preserve_haralick_bug=False, compute_14th_feature=False)

	Compute Haralick texture features

Computes the Haralick texture features for the four 2-D directions or
thirteen 3-D directions (depending on the dimensions of f).

	Parameters :	f : ndarray of integer type

input image. 2-D and 3-D images are supported.

ignore_zeros : bool, optional

Whether to ignore zero pixels (default: False).

	Returns :	feats : ndarray of np.double

A 4x13 or 4x14 feature vector (one row per direction) if f is 2D,
13x13 or 13x14 if it is 3D. The exact number of features depends on the
value of compute_14th_feature

	Other Parameters:

		preserve_haralick_bug : bool, optional

whether to replicate Haralick’s typo (default: False).
You probably want to always set this to False unless you want to
replicate someone else’s wrong implementation.

compute_14th_feature : bool, optional

whether to compute & return the 14-th feature

Notes

Haralick’s paper has a typo in one of the equations. This function
implements the correct feature unless preserve_haralick_bug is True. The
only reason why you’d want the buggy behaviour is if you want to match
another implementation.

References

Cite the following reference for these features:

@article{Haralick1973,
 author = {Haralick, Robert M. and Dinstein, Its'hak and Shanmugam, K.},
 journal = {Ieee Transactions On Systems Man And Cybernetics},
 number = {6},
 pages = {610--621},
 publisher = {IEEE},
 title = {Textural features for image classification},
 url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4309314},
 volume = {3},
 year = {1973}
}

	
mahotas.features.lbp(image, radius, points, ignore_zeros=False)

	Compute Linear Binary Patterns

The return value is a histogram of feature counts, where position i
corresponds to the number of pixels that had code i. The codes are
compressed so that impossible codes are not used. Therefore, this is the
i``th feature, not just the feature with binary code ``i.

	Parameters :	image : ndarray

input image (2-D numpy ndarray)

radius : number (integer or floating point)

radius (in pixels)

points : integer

nr of points to consider

ignore_zeros : boolean, optional

whether to ignore zeros (default: False)

	Returns :	features : 1-D numpy ndarray

histogram of features. See above for a caveat on the interpretation of
these.

	
mahotas.features.pftas(img, T={mahotas.threshold.otsu(img)})

	Compute parameter free Threshold Adjacency Statistics

TAS were presented by Hamilton et al. in “Fast automated cell phenotype
image classification” (http://www.biomedcentral.com/1471-2105/8/110)

The current version is an adapted version which is free of parameters. The
thresholding is done by using Otsu’s algorithm (or can be pre-computed and
passed in by setting T), the margin around the mean of pixels to be
included is the standard deviation. This was first published by Coelho et
al. in “Structured Literature Image Finder: Extracting Information from
Text and Images in Biomedical Literature”
(http://www.springerlink.com/content/60634778710577t0/)

Also returns a version computed on the negative of the binarisation defined
by Hamilton et al.

Use tas() to get the original version of the features.

	Parameters :	img : ndarray, 2D or 3D

input image

T : integer, optional

Threshold to use (default: compute with otsu)

	Returns :	values : ndarray

A 1-D ndarray of feature values

	
mahotas.features.tas(img)

	Compute Threshold Adjacency Statistics

TAS were presented by Hamilton et al. in “Fast automated cell phenotype
image classification” (http://www.biomedcentral.com/1471-2105/8/110)

Also returns a version computed on the negative of the binarisation defined
by Hamilton et al.

See also pftas() for a variation without any hardcoded parameters.

	Parameters :	img : ndarray, 2D or 3D

input image

	Returns :	values : ndarray

A 1-D ndarray of feature values

See also

	pftas

	Parameter free TAS

	
mahotas.features.zernike(im, degree, radius, cm={center_of_mass(im)})

	

	
mahotas.features.zernike_moments(im, radius, degree=8, cm={center_of_mass(im)})

	Zernike moments through degree

Returns a vector of absolute Zernike moments through degree for the
image im.

	Parameters :	im : 2-ndarray

input image

radius : integer

the maximum radius for the Zernike polynomials, in pixels

degree : integer, optional

Maximum degree to use (default: 8)

cm : pair of floats, optional

the centre of mass to use. By default, uses the image’s centre of mass.

	Returns :	zvalues : 1-ndarray of floats

Zernike moments

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	mahotas 1.0 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 mahotas	

 	
 	
 mahotas.features	

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	mahotas 1.0 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 mahotas	

 	
 	
 mahotas.features	

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 modules |

 	mahotas 1.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | W
 | Z

A

 	

 	as_rgb() (in module mahotas)

B

 	

 	bbox() (in module mahotas)

 	border() (in module mahotas)

 	

 	borders() (in module mahotas)

 	bwperim() (in module mahotas)

C

 	

 	cdilate() (in module mahotas)

 	center_of_mass() (in module mahotas)

 	cerode() (in module mahotas)

 	close() (in module mahotas)

 	close_holes() (in module mahotas)

 	

 	convolve() (in module mahotas)

 	convolve1d() (in module mahotas)

 	croptobbox() (in module mahotas)

 	cwatershed() (in module mahotas)

D

 	

 	daubechies() (in module mahotas)

 	dilate() (in module mahotas)

 	

 	distance() (in module mahotas)

E

 	

 	erode() (in module mahotas)

 	

 	euler() (in module mahotas)

F

 	

 	fullhistogram() (in module mahotas)

G

 	

 	gaussian_filter() (in module mahotas)

 	gaussian_filter1d() (in module mahotas)

 	

 	get_structuring_elem() (in module mahotas)

H

 	

 	haar() (in module mahotas)

 	haralick() (in module mahotas.features)

 	

 	hitmiss() (in module mahotas)

I

 	

 	idaubechies() (in module mahotas)

 	ihaar() (in module mahotas)

 	imread() (in module mahotas)

 	

 	imresize() (in module mahotas)

 	imsave() (in module mahotas)

L

 	

 	label() (in module mahotas)

 	labeled_sum() (in module mahotas)

 	

 	lbp() (in module mahotas.features)

M

 	

 	mahotas (module)

 	mahotas.features (module)

 	majority_filter() (in module mahotas)

 	

 	median_filter() (in module mahotas)

 	moments() (in module mahotas)

O

 	

 	open() (in module mahotas)

 	

 	otsu() (in module mahotas)

P

 	

 	pftas() (in module mahotas.features)

R

 	

 	rank_filter() (in module mahotas)

 	rc() (in module mahotas)

 	

 	regmax() (in module mahotas)

 	regmin() (in module mahotas)

S

 	

 	sobel() (in module mahotas)

 	

 	stretch() (in module mahotas)

T

 	

 	tas() (in module mahotas.features)

 	template_match() (in module mahotas)

 	

 	thin() (in module mahotas)

W

 	

 	wavelet_center() (in module mahotas)

 	

 	wavelet_decenter() (in module mahotas)

Z

 	

 	zernike() (in module mahotas.features)

 	

 	zernike_moments() (in module mahotas.features)

 Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

surfref.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		mahotas 1.0 documentation »

Implementing SURF-ref With Mahotas

This is a companion to the paper `Determining the subcellular location of new
proteins from microscope images using local features`__ by Coelho et al. (2013).

def surf_ref(f, ref):
 '''
 features = surf_ref(f, ref)

 Computer SURF-ref features

 Parameters

 f : ndarray
 input image
 ref : ndarray
 Corresponding reference image

 Returns

 features : ndarray
 descriptors
 '''
 fi = surf.integral(f.copy())
 points = surf.interest_points(fi, 6, 24, 1, max_points=1024, is_integral=True)
 descs = surf.descriptors(fi, points, is_integral=True, descriptor_only=True)
 if ref is None:
 return descs
 descsref = surf.descriptors(ref, points, descriptor_only=True)
 return np.hstack((descs, descsref))

 © Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		
 modules |

 		mahotas 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2013, Luis Pedro Coelho.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

